20. Synthesis of Derivatives of (1R*,10aR*)-1-Azido-10-benzylidene-4-(diethylphosphono)-1,2,10,10a-tetrahydro-2-oxo-4H-azeto[1,2-a]pyrido[1,2-d]pyrazin-9-ylium Bromide

by Gholam H. Hakimelahi* and Ali R. Sardarian

Chemistry Department, Shiraz University, Shiraz, Iran

(6. VII. 89)

The synthesis of some derivatives of the title compound VI is described. Bromination of diethyl (*cis*-3-azido-2oxo-4-styrylazetidin-1-yl)(pyridin-2-yl)methylphosphonate (6) in MeOH gave tricyclic β -lactam 7, while similar bromination of diethyl (*cis*-3-azido-2-oxo-4-vinylazetidin-1-yl)(pyridin-2-yl)methylphosphonate (9) afforded tricyclic β -lactam 10. Mechanisms for these transformations are proposed (*Schemes 1* and 2).

The essential features of the classical β -lactam antibiotics penicillin (I) and cephalosporin (II) are a *cis*-disubstituted β -lactam ring, an acylamino side chain, an acidic function, and a five-membered ring or a six-membered ring containing a double bond conjugated with the β -lactam N-atom conferring enough ring strain in order to render the β -lactam ring susceptible nucleophilic attack of the enzyme responsible for the bacterial cell wall synthesis. It is known that the S-atom can be replaced by an O-, N-, or C-atom without substantial loss of antimicrobial activity [1] [2]. We have shown that

compound III exhibits weak antibacterial activity and good anticancer property, while IV and V display none [3].

We wish to describe now the synthesis of β -lactams similar to penicillin and cephalosporin but differing in that the COOH function is replaced by a phosphonic acid, and the strain of the β -lactam is generated by electron-withdrawing properties of an attached pyridine ring and/or by fusing this pyridine moiety to the β -lactam by means of an additional ring as indicated in structure **VI**. Furthermore, the presence of the phosphonic acid in **VI** might provide more selectivity towards tumor cells than towards normal tissues [4].

We chose as starting material the readily available pyridine-2-carbaldehyde (1) which was converted in nearly quantitative yield to its *Schiff* base 2 by means of benzylamine in CH₂Cl₂. Reaction with diethyl phosphite at elevated temperature afforded compound 3 (99%), and removal of the benzylic group was easily accomplished by catalytic transfer reduction [5] of $3 \cdot$ HCl using PdCl₂ and cyclohexene in refluxing EtOH for 20 h (\rightarrow 4; 80%). The structure of aminophosphonate 4 followed from its spectral and analytical data. Using the procedure described by *Doyle et al.* [6], 4 was transformed to its stable *Schiff* base 5 which, upon reaction with azidoacetyl chloride and Et₃N in CH₂Cl₂ at -10° , gave β -lactam 6 (80%) as a mixture of epimers at the phosphonate-bearing C-atom. All β -lactams obtained by this method were *cis*-disubstituted [7] as determined by ¹H-NMR (J = 5 Hz) of all derivatives in which the relevant protons did not overlap with other signals. Bromination of 6 with Br₂ in CH₂Cl₂ or CHCl₃ failed, resulting in the formation of unidentifiable compounds. However, bromination in MeOH afforded β -lactam 7 (70%) characterized by its IR, ¹H-NMR, mass spectra, and elemental analysis.

9

Since the benzylic position of the intermediate bromonium ion VIII (formed from 6 *via* VII) is more susceptible to solvolysis than to internal nucleophilic attack of the N-atom of the pyridine moiety, we suggest that 7 is obtained *via* IX according to the mechanism given in *Scheme 1*.

All attempts (with, 1,8-diazabicyclo[5.4.0]undecan-7-one(DBU)/THF) to eliminate the MeO function in 7 to afford the desired compound X (*Scheme 1*) failed, resulting in the destruction of the β -lactam ring.

In order to establish the effect of the Ph substituent of the bromonium ion VIII on the solvolysis at its benzylic position, we performed a similar series of reactions using acrylaldehyde for the *Schiff*-base formation from 4. Treatment of the resulting *Schiff* base 8 with azidoacetyl chloride gave $cis-\beta$ -lactam 9 (60%), and bromination of 9 with $Br_2/MeOH$ afforded the expected tricyclic compound 10 (*ca.* 35%), presumably by an internal nucleophilic attack of the N-atom of the pyridine ring in the intermediate bromonium ion XI, followed by elimination of H Br from XII (*Scheme 2*). Thus, the

182

internal nucleophilic displacement in XI under formation of a favorable six-membered ring is faster than the internal nucleophilic attack at the benzylic position of VIII (Scheme 1); in the latter case, solvolysis can preferably compete with the formation of a seven-membered ring.

All attempts to deprotect the phosphonic-acid moiety [8] in 7 and 10 failed, resulting in recovery or destruction of the starting materials.

This work was supported by the Shiraz University Research Council and Radja Chemical and Pharmaceutical Company.

Experimental Part

General. See [9].

N-[(Pyridin-2-yl)methylidene]benzylamine (2), Diethyl [(3-Phenylprop-2-enylidene)amino](pyridin-2-yl)methylphosphonate (5), and Diethyl [(Prop-2-enylidene)amino](pyridin-2-yl)methylphosphonate (8). Representative Procedure: To a soln. of 4 (2.13 g, 0.01 mol) in dry CH₂Cl₂ (250 ml) was added cinnamaldehyde (1.32 g, 0.01 mol). The soln. was brought to reflux and the CH₂Cl₂ distilled slowly under constant addition of dry CH₂Cl₂ so as to maintain the same volume of liquid. After removal of all reaction H₂O (5 h), the soln. was cooled and MgSO₄ added. After 1 h, the mixture was filtered and the soln. evaporated: 3.30 g (99%) of 5 as an oil. IR (CH₂Cl₂): 1636 (HC=N). ¹H-NMR (CDCl₃): 1.00–1.52 (2t, 2CH₃CH₂O); 3.88–4.48 (2q, 2CH₃CH₂O); 5.57 (d, J = 18, CHP); 6.70–8.70 (m, PhCH=CHCH, C₅H₄N).

8: Oil. IR (CH₂Cl₂): 1640 (HC=N). ¹H-NMR (CDCl₃): 1.01–1.52 (2t, 2CH₃CH₂O); 3.89–4.48 (2q, 2CH₃CH₂O); 5.54 (d, J = 18.6 CHP); 5.45–6.20 (m, CH₂=CH); 7.31 (br. d, CH=N); 7.01–7.70 (m, 3 H of Py); 8.52 (br. d, H_a of Py).

2: Oil. From benzylamine and pyridine-2-carbaldehyde (1) in CH_2Cl_2 in the presence of MgSO₄ at 25°. IR (CH₂Cl₂): 1650 (HC=N). ¹H-NMR (CDCl₃): 4.78 (*s*, PhCH₂); 6.91–8.69 (*m*, HC=N, Ph, Py).

Diethyl (cis-3-Azido-2-oxo-4-styrylazetidin-1-yl)(pyridin-2-yl)methylphosphonate (6) and Diethyl (cis-3-Azido-2-oxo-4-vinylazetidin-1-yl)(pyridin-2-yl)methylphosphonate (9). Representative Procedure: To the freshly prepared 5 (3.58 g, 0.01 mol) in dry CH₂Cl₂ (200 ml) was added at -10° Et₃N (2.02 g, 0.02 mol). A soln. of azidoacetyl chloride (1.2 g, 0.01 mol) in dry CH₂Cl₂ (30 ml) was added dropwise within 45 min. The soln. was stirred for 2.5 h and evaporated. The residue was dissolved in Et₂O, treated with charcoal, filtered, and evaporated to give, after chromatography on silica gel (CHCl₃), 3.12 g (80%) of 6 as an oily mixture of diastereoisomers. IR (CH₂Cl₂): 2100 (N₃), 1758 (β -lactam). ¹H-NMR (CDCl₃): 1.01–1.51 (2t, 2 CH₃CH₂O); 3.89–4.49 (2q, 2 CH₃CH₂O); 4.89 (br., H–C(4)); 5.20 (d, J = 19.5, CHP); 5.54 (d, J = 5.5, H–C(3)); 6.50 (dd, J = 16, 7, PhCH=CH); 6.72 (d, J = 16, PhCH = CH); 7.00–7.81 (m, Ph, 3 H of Py); 8.50 (br. d, H_o of Py). Anal. calc. for C₂₁H₂₄N₅O₄P (441.33): C 57.14, H 5.44, N 15.87; found: C 57.19, H 5.45, N 15.89.

9: Oil (60%). IR (CH₂Cl₂): 2100 (N₃), 1755 (β -lactam). ¹H-NMR (CDCl₃): 1.00–1.50 (2*t*, 2CH₃CH₂O); 3.80–4.31 (2*q*, 2 CH₃CH₂O); 4.73 (br., H–C(4)); 4.99–5.79 (*m*, CHP, H–C(3), CH₂=CH); 7.00–7.65 (*m*, 3 H of Py); 8.49 (br. *d*, *J* = 3.5, H_o of Py). Anal. calc. for C₁₅H₂₀N₅O₄P (365.21): C 49.31, H 5.48, N 19.18; found: C 49.52, H 5.55, N 19.29.

Diethyl (Benzylamino) (pyridin-2-yl) methylphosphonate (3). To 2 (1.96 g, 0.01 mol) was added diethyl phosphite (1.40 g, 0.012 mol) at 60°. After stirring for 15 min, TLC showed the disappearance of the starting materials. Chromatography on silica gel (CH₂Cl₂/CHCl₃ 1:1) afforded 3 (99%) as an oil. IR (CH₂Cl₂): 3360–3380 (NH), 1580, 1600 (Ph, Py). ¹H-NMR (CDCl₃): 1.01–1.42 (2t, 2CH₃CH₂O); 2.99 (br., NH, exchanged with D₂O); 3.60–4.19 (m, 2 CH₃CH₂O, PhCH₂); 4.30 (d, J = 18, CHP); 7.00–7.80 (m, Ph, 3 H of Py); 8.55 (d, J = 3.5, H_o of Py). Anal. calc. for C₁₁H₂₃N₂O₃P (334.31): C 61.08, H 6.88, N 8.38; found: C 61.10, H 7.02, N 8.41.

Compound 3 was dissolved in Et_2O and HCl gas bubbled into the soln. After 5 min, the solvent was evaporated: 3 HCl (100%) as a foam.

Diethyl Amino(pyridin-2-yl)methylphosphonate (4). Compound 3·HCl (3.705 g, 0.01 mol) was dissolved in refluxing EtOH (400 ml). Cyclohexene (200 ml) and PdCl₂ (3 g) were added, and refluxing was continued for 20 h. The mixture was filtered the filtrate evaporated, and the residue chromatographed on silica gel (AcOEt): 4 (80%). IR (CH₂Cl₂): 3350–3400 (NH₂), 1580 (Py). ¹H-NMR (CDCl₃): 1.01–1.49 (2t, 2 CH₃CH₂O); 3.09 (br., NH₂, exchange with D₂O); 3.79–4.29 (2q, 2 CH₃CH₂O); 4.44 (d, J = 18, CHP); 7.00–7.80 (m, 3 H of Py); 8.55 (d, J = 4, H_o of Py). Anal. calc. for C₁₀H₁₇N₂O₃ (213.13): C 56.34, H 7.98, N 13.14; found: C 56.45, H 8.11, N 12.98.

 $(1 \mathbb{R}^*, 10 \mathbb{a}\mathbb{R}^*)$ -1-Azido-4-(diethylphosphono)-1, 2, 10, 10a-tetrahydro-10-(α -methoxybenzyl)-2-oxo-4 H-azeto-[1,2- α]pyrido[1,2-d]pyrazin-9-ylium Bromide (7) and $(1 \mathbb{R}^*, 10 \mathbb{a}\mathbb{R}^*)$ -1-Azido-4-(diethylphosphono)-1,2,10,10a-tetrahydro-10-methylidene-2-oxo-4 H-azeto[1,2- α]pyrido[1,2-d]pyrazin-9-ylium Bromide (10). Representative Procedure : β -Lactam 6 (4.41 g, 0.01 mol) was dissolved in MeOH (70 ml) and Br₂ (0.012 mol) added dropwise with stirring at 25°. After 15 min, the soln. was evaporated and the residue purified by prep. TLC (Et₂O/MeOH 7:3): 7 (70%). M.p. 130–132°. IR (CH₂Cl₂): 2110 (N₃), 1769 (β -lactam). ¹H-NMR (CDCl₃): 1.09–1.62 (2t, 2CH₃CH₂O); 3.49–4.11 (m, 2 CH₃CH₂O, H–C(10), H–C(10a)); 3.80 (s, CH₃O); 4.41 (d, J = 5.5, H–C(1)); 4.90 (br. d, PhCH); 6.10 (d, J = 18, H–C(4)); 7.11–7.59 (m, Ph); 8.62–9.35 (m, H–C(5), H–C(6), H–C(7)); 10.32 (d, J = 4, H–C(8)). Anal. calc. for C₂₂H₂₇BrN₅O₅P (552.43): C 47.83, H 4.89, N 12.68, Br 14.49; found: C 47.80, H 4.91, N 12.70, Br 14.54.

10: Foam (35%). IR (CH₂Cl₂): 2100 (N₃), 1782 (β -lactam). ¹H-NMR ((D₆)DMSO): 1.00–1.49 (2t, 2 CH₃CH₂O); 3.51–4.12 (m, 2 CH₃CH₂O, H–C(10a)); 4.31 (d, J = 5, H–C(1)); 6.40 (d, J = 20, H–C(4), exchange with D₂O); 7.25 (br. d, CH₂=C); 8.41–9.25 (m, H–C(5), H–C(6), H–C(7)); 10.41 (br. d, H–C(8)). Anal. calc. for C₁₅H₁₉BrN₅O₄P (444.35): C 40.54, H 4.28, N 15.77, Br 18.02; found: C 40.43, H 4.30, N 15.97, Br 18.13.

REFERENCES

- [1] T.W. Doyle, B. Belleau, B.-Y. Luh, C. F. Ferrari, M. P. Cunningham, Can. J. Chem. 1977, 55, 468.
- [2] R.A. Firestone, J.L. Fahey, N.S. Maciejewicz, G.S. Pater, B.G. Christensen, J. Med. Chem. 1977, 20, 551.
- [3] G. Just, G. H. Hakimelahi, U.S. Patent, 4, 385, 175, May 24, 1983; G. H. Hakimelahi, unpublished results.
- [4] H. Dugas, C. Penney, 'Bioorganic Chemistry, A Chemical Approach to Enzyme Action', Ed. C. R. Cantor, Springer-Verlag, Berlin, 1981, p. 36.
- [5] E. A. Braude, R. P. Linstead, P. W. Mitchell, K. R. H. Woolridge, J. Chem. Soc. 1954, 3595; V. S. Rao, A. S. Perlin, Carbohydr. Res. 1980, 83, 175; S. Hanessian, T. J. Liak, B. Vanasse, Synthesis 1981, 396.
- [6] T.W. Doyle, A. Martel, B.-y. Luh, Can. J. Chem. 1977, 55, 2708.
- [7] H. B. Kagan, J. J. Basselier, J. L. Luche, *Tetrahedron Lett.* 1964, 941.
- [8] T. Morita, Y. Okamoto, H. Sakurai, Tetrahedron Lett. 1978, 2523.
- [9] G.H. Hakimelahi, M. Zarrinehzad, A.A. Jarrahpour, H. Sharghi, Helv. Chim. Acta 1987, 70, 219.